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ABSTRACT

A semi-Markovian point process is defined, for which the intervals
of time between successive events have phase type distribution. The
distribution of the number of events in an interval is examined, and it is
shown how the expected number of events in an interval may be efficiently
computed. A stationary version of the process is analysed. In parti-
cular, the necessary and sufficient condition under which the new process
is a renewal process is determined. Simple sufficient conditions are

presented.

Keywords

Semi-Markov process, phase type distributions, conditions for

independence, computational probability.
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Introduction

Most of the literature on queueing theory deals with systems for
which arrivals occur according to a renewal process. From the available ]
results, it is clear that the analysis of a queueing system with a general

non-renewal arrival process is very difficult.

BYCRre - by o ae

In the present paper, we define and discuss a special semi-Markovian

point process. It is assumed that there are N different types of inter-
vals, each with a phase type distribution. The types of successive intervals
are determined by a Markov chain with transition probability matrix P.
If a given interval is of type i, 1 < i < N, then the following interval
is of type j, 1 < j < N, with probability Pij' Phase type distributions
have great versatility and the structure of the process is very simple.
It should, therefore, be a useful tool in modeling queueing systems with
non-independent arrivals, and provide analytically or algorithmically g
tractable results.

We shall give a formal definition of the process in the next section.
We examine in Section 2 the number of events in an interval and show how the
expected number of events may be efficiently computed. In Section 3, we
analyse the correlation structure of a stationary version of the process.
In particular, we determine the necessary and sufficient condition under which
that process is a remewal process. In Section 4, some examples such as
the interrupted Poisson arrivals are considered in further detail.

Notational convention. All vectors are represented by underlined

letters. The context indicates whether they are row or column vectors.
In order to facilitate the reading of the formulas, the expression v w
always represents the inner product of a row vector v by a column vector

w; the expression w ° v always represents the product of a column vector




¥ by a rov vector v, yielding a matrix whose (i,j)th element is

w,V,.

i3

1. The Phase Type Semi-Markovian Point Process
1.1 Phase Type Distributions

Phase type distributions have been introduced by Neuts [4]. Con-
sider a (n+l)~-state continuous-parameter Markov process, with n transient

states and one absorbing state. 1Its infinitesimal generator Q is of the

form

where T 1is a square matrix of order n, with T“ <0, Tij >0, for

i 4 3j, and such that T-l exists. The n-vector T° has nomnegative
entries, and is equal to -Te. The vector e has all entries equal to ome.

The vector of initial probabilities is denoted by (a,a and satisfies

n+1) ’

22"‘“ -1,010 < 1.

n+l ntl

The probability distribution F(+) of the time till absorption in the

state n+ 1 is then given by
F(x) = 1-gaexp(Tx) e, for x> 0.

The probability distribution F(-) 1s said to be of phase type (in short,
"F 1s PH"). The pair (a,T) 1is called a representation of F(-). In
this paper, we assume that a1 ” 0, 8o that F(+) does not have a jump

at 0. Furthermore, we assume that the representation is such that each

state has a positive probability of being visited before absorption. Under

that assumption, the Markov chain with generator T + T° * a 1s irreducible.
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The moments u(k) of F(*) about the origin all exist and are given
by

u(k) = (-l)k k! g'r-kg s for k>1 . 1)

1.2 The Point Process

We consider N PH-distributions, with representations Qﬁi'ri)’ where

T, 1s a square matrix of order n,, for i=1, ..., N, and an N-state

i
irreducible Markov chain with transition matrix P. If the Markov chain
has made a transition to the state i, the next transition is to the state

j, with probability pij’ and the time between these transitions has a PH-

~hAw i o ditmnat i bt

distribution Fi(p), with representation (gi,Ti), independent of j. The

TR

epochs of transitions for the Markov chain correspond to the epochs of events
for the point process.

We denote respectively by N(t), C(t) and ¢(t), the number of events
in (0,t], the state of the Markov chain P at time t, and the state
of the Markov chain TC(t)’ at time t. In other words, suppose that the
last event before ¢t occurred at time 1. At time T, the Markov chain P
made a transition to the state C(t) = j, say, and an initial state was
chosen for the Markov chain Tj’ according to the probability vector gj.
In the interval (t,t], the Markov chain '1'j undervent zero, one or more
than one transitions, without entering its absorbing state. At time ¢,
C(t) = j, and the Markov chain Tj is in the state &(t).

We make the following independence assumption. For every t > 0, the
intervals of time between events are conditionally independent, given the
path function of the Markov chain P. It is then clear that the process

{N(t), c(t), #(t), t > 0} 1is a Markov process with state space

TN LR b SOAMATRY R, il e

AN Ty o e



{(v,3,4); v>20,1<3j <N, 1<% 5-"3}' In order to distinguish easily
between the Markov chain P and the Markov chains Ti’ i=1, ..., N, we

shall refer to the states of any Markov chain Ti as "phases”.

2. The Number of Events in an Interval

We define the probabilities = P[N(t) = v, C(t) = §, &(t) = ¢ |

$1,85340
C(0) = 1, 9(0) = £], and order the elements {(j,$); 1 <3 <N, 1 < ¢ g_nj}
as follows: (1,1), (1,2), ..., (l,nl),(Z,l), ceey (2,n2), ooy (No1), ooe,y
(N,nN). Finally we define the block-partitioned square matrix S(v,t) of

order n +n, + ... + oy by

rSl,l(v,t:) Sl,z(v,t) ves Sl,N(v,t)7
sz’l(v!t) Sz’z(\’,t) coe SZ’N(\),t)

S(v,t) = . . . .

\su,l(‘”t) su,z(“’t) SN,N(“’t)J

where the blocks Si j(v,t) have n, rous and nj columns, and the
’

(£,4)th element of S, ,(v,t) 1is equal to S (vyt).

i,] 1,539
The Chapman-Kolmogorov equations for the process {N(t), C(t), ¢(t), t > 0}

may be written in matrix notation as

Si’j(o,t) =0, for i4 3§,
- si,i(o’t) Ti’ for 1 =3,
N
Si'J(v,t) - si’j(v,t) Tj - kfl Si’k(v-l,t) pkj zk . Ej .

for v> 1.

Therefore, the matrices S(v,t) satisfy the system of linear differential




equations:

S'(0,t) = S(0,¢) T ,

§'(v,t) = S(v,t) T - S(v-1,t) TA , for v>1,

with initial conditions S§(0,0) = I, S(v,0) = 0, for v > 1, where the

square matrices T and A are of order n,y + n, + ... + ng . The matrix

T is block-diagonal and given by

( 3
Tl 0 0 LR ) 0
o T, 0 0
T= 0 0 T, 0 .
0 ] 0 'I'NJ

\

and the block-partitioned matrix A is given by

r . L] L]
P1181°%; P1p&1°%  --- PN8°%y
P21%°%)  P228°%; - PonSp7%y

A= . .

Pr1EN'Y) PaSy'Z2 o Pandy "y

By e, we denote an n_ -vector with each entry equal to one.

1 i

o
The matrix-generating function g(z,t) -z z¥ S(v,t), defined for
v=(0

|z| <1, satisfies the differential equation
s%g(z,t) - g‘(z,t) T (I-zA) , g(z,O) = T, for t > 0.

'Hence, we have that g(z,t) = exp [T(1-zA)t]. In particular, g(O,t) =

exp(?t:), as is to be expected. Also, g(l,t) = exp [T(I-A)t], which is

iy B
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again obvious, since the process {C(t), ¢(t), t > 0} is a continuous para-
meter Markov chain with infinitesimal generator T(I-4).

We now define the matrix M(t) = Ea;a g(z’tﬂt-l’ and the vector
m(t) = M(t)e. We partition that vector as m(t) = (;n_l(t),n_n.z(t),...,u_xn(t)),
where gi(t), i=1,...,N, has n;, compoments. The component ni’g(t)
is the expected number of events occurring before time t, given the initial
conditions C(0) = i, and ¢(0) = §& Furthermore, we denote by y the in-
variant probability vector associated with P, i.e. Yy P =y, ye=1.
Every entry of y 1is strictly positive. Finally, we denote by = the
stationary probability vector of T(I-A_), if.e. 1 f(I—K) =0, ne=1.
Lemma 1.

e & o e . a e o ¢ 4 e . e

The vector m(t) is given'b'y

m(t) = m*t e - (I-M [H-TaE-D1 T e
(2)
- (M~exp(T(I-D)t)] [I-T(-D]1 ' Te, for t >0,
where the square matrix 11 of order n, + n, + ... + ny is equal to
- %. T* d{s any real number such that T > max {~(T(I-A)), .., .;
-_ - io¢ai’¢

1<i<N,1<¢<n}, and m* is given by

i

m*=-1Te . (3)

Moreover, if we partition 7 as 1 = (11’12"”’1!{)’ where I, isan
ni-vector, i=1, ..., N, we have that
T, =cy, a (-T )-1 for i =1 N (4
=i i-=1 i ' oty T

The normalizing constant ¢ satisfies

)y=1 | (5)

m*-c-(l£

-
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Proof. To prove the first part of the lemma, we observe that the point process

where the N-vector u has components u
under consideration is a special case of the "Versatile Markovian Point Process"
defined in Neuts [5]. Equation (2) then follows by adapting Equation (12)

of [5] to our process. The proof of the second part is immediate.

Remarks

1. The third term in (2) tends to zero as t tends to infinity, since
r[-exp[?(I-X)t] = ][ - exp [g(l,t)], does. Therefore the first two terms

give the linear asymptote of m(t).

2. 1In order to compute g_(t:), it is not necessary to evaluate the inverse

of the large matrix [T*H-?(I-X)]. It suffices to determine the vector u

] . o . * + er

defined as
u=- [T -TAD]  Te . (6)

This may be done efficiently as we show below.

3. The main problem in computing m(t) from (2) therefore lies in eval-
uating the third term, which we denote by v(t). The vector wv(t) 1is the
solution of the system of differential equations, of order - ny + n, + ...

+ nN, given by

v'(t) = T(I-a) w(t) , v(0) = (D-I) u .

Lemma 2
If we partition the vector u as u = (21,9_2,...,5“), where u,

is an ni-vector for i =1, ..., N, then

,\\;£+vi£+m*1‘;13, for {=1, ..., N, 7

u

e
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where V = -m* (I-P+I')-1 P g(l) .

A 1 2 (2)
v-m*/'t*-i-fm* Y B -hyv.
The vectors ) (2
u and h have N components, given by LPE
-2 1
Zcxl Ti e, hi-m*yiuf), for i=1, ..., N.

Proof. The vector u 1is the unique solution to the system

[v*1 - T(I-A)] u=-Te . (8)

Upon substitution of the stated expressions for u and after some routine,
but belabored calculations, it is verified that (7) indeed provides the solu-
tion to (8). The details are omitted for the sake of brevity.

The equation (2) now becomes

m(t) = mrte + *(I-1) (T 1-N)e + m*[N-exp (T(I-2)t) ] (T 1-N)e ,

9)

for t >0,

where the matrix N is block-diagonal and given by

N 0 0)
N= |0 Ny .. of
\o 0 Ny,

Ni is a square matrix of order n;, and is equal to [(I-P-O-I')-1 P g(l)]i I.

Remark.
In order to determine (?I-N)g, it is not necessary to invert matrices.

One merely solves N+1 systems of linear equations, i.e. the systems

(1

T =e¢ for i=1, ..., N, and the system (I-PH')y =P yu .

1%
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3. A Stationary Version of the Point Process
Usually, the stationary point process, which we denote by P*, is ob-
tained by choosing the initial state (C(0),%(0)) according to the proba-
bility vector m. We consider a slightly different process, denoted by 3,
for which (C(0),%(0)) 1is chosen by P[C(0) = j,0(0) = E] = yj(gj)s.

other words, we choose the time origin so that at time O-, an event has occured,

In

the type of the next interval is chosen according to the statiomary vector Yy
of P. In view of our ultimate objective of using this process to model
arrivals to queueing systems, the process B has the following interesting
property.

Let us denote by Xn the interval of time between the (n-1)st and the
nth event (between time O and the first event, if n = 1).
Lemma 3

The random variables {Xn,nz}} have a common marginal distribution
r(+). The distribution r(<) is PH, and has a representation (Q;T), where
the vector a has n1 + n, + ... Ny components and is given by a =
(Ylgl’YZEZ""’YNEN)' Therefore

N

Z v, a
=1 i

r(x) =1~ exp(Tix) e, for x>0,

and the kth moment m(k) of r(+) about the origin is equal to .

m(k)-l_;_.l_(k) , for k>1.
The N-vectors E(k) have entries uik) = (-1)k k! &y T;k e .

Proof. The proof is obvious.
In the remainder of this section, we examine the correlation structure
of the intervals of time between events. This is related to recent work by

Simon [7]. Because of the difference in our approach, we postpone discussion
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of this relation to the end of this section.

We now introduce the notion of linear dependence for PH-distributions.

Definition 1

The set {(gi,'ri), 1 <1i<N: is a set of linearly independent PH- F
N B
distributions if and only if I diFi(x) = 0, for all x > 0, implies
i=]1

that di is equal to zero, for i =1, ..., N, where Fi(x) =] -

ey exp('rix)g » for x>0,

Definition 2

The PH-distribution (gB,B) 4is linearly dependent of the PH-distributioms

(gi,'l‘i), i=1, ..., N, if and only if there exist {dl, dz, cens dN}’ such

N
that di # 0 for some i, and 1 - B exp(Bx) e = I diFi(x)’ for all x > O,
i=1
where the Fi(x) are defined above.
N
It is clear that for any such set {d., ..., d.} we have £ d, = 1.
1 N o1 1

Remarks

1. The term "linearly independent” has been chosen for the following reason.

N
We easily observe that [ di Fi (x) 1is equal to zero for all positive x
N i=
if and only if I 4 e, T, e is equal to zero for all k > 1. The defini-

i=1
tion 1 is therefore equivalent to the condition that the infinite vectors

(_o_ti'rig_,g_i'rzg,...), i=1, ..., N, are linearly independent.

2. If (B8,B) is linearly dependent of {(p_:i,'ri), i=1, ..., N}, and

d; 20, forall 4=1, ..., N, then (8,B) and (EO,BO) are two repre- 1

sentations of the same PH-distribution, where
By = (d33,,d90,,...5dyay) E

and
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The proof is elementary. Similarly, if cli <0, for i=1, ..., J, and
di >0, for i=J+1, ..., N, then clearly g
1 3
J o] N )
1+ £ Ja,|= = 4, . 1

E: =1 1 gmya 1

If we set the latter quantity equal to 3, then (21,31) and (QQ,BZ)

where

BN 15 g ey

B = lB Jil_l.a ceo dJ i’
AT STy Ao Ty &) *
i
B 0o .. o)
0 T cee 0 g
B, = |. 1 ) , |
1 . . .
0 0 coe TJJ
[ d d g
o m |3 N, .=
=2 =J+1* " N ’ i
\ a’ g ]
"rJ+1 0o ... 0)
B | 0 Ty o O ,
{ o 0 LI N ) TNJ

are two representations of the same PH-distribution.
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Let now the PH-distributions {(gi,'ri), i=1, ..., N} which define

the point process, be expressed as linear combinations of the linearly L

;

; independent PH-distributions {(Ej,zj), j=1...L}, with L <N, i.e. f

; L E
Fi(x) - jfl dij Gj(x) , for all x>0, and 1 = 1, ..., N, ]

where Gj(x) =1 - % exp(ij)g. We denote by D the matrix with (i,j)th

element equal to d, We also define the vectors F(x) = (Fl(x),l-'2 (679 JRNN

5

Fy(0), G = (6,(x),6,(x),..0,6,), and w® = s, @),
for k > 1, where ug (k) is the kth mement about the origin of Gj(-). |
We then clearly have that i
F(x) =D G(x) , for x>0, (10) 4
and E
p® ap e ® for k>1. 1)

TRET

It is also clear that De=¢e .

We emphasize that the set of PH-distributions {(_;j,zj),j =1, ..., L}

is not necessarily a subset of {(gi,'ri),i =1, ..., N}, The following is an
: 1lluscrative example.
If
f .
. -, O
@,,T)  4@/2,1/2), T
: =1’"1
0 -XZ
y
f-xl 0 )
(@,,T,) = 1(2/3,1/3), ’
: \ !
1 ¢ 3
—Az 0
(2.3’T3) - <(1-/3’2/3)’ 4
{ 0 oy




(%’Tl‘) = (1/3’1/391/3), 0 -l 0

2 9
0 0 -A3
then we may either choose
(Ejuzj) = (&jsrj) ’ i=1,2,3,
with
1 0 0 ]
0 1 0
D= ’
0 0] 1
12/5 1/5 2/5J
or alternatively
(Sj’zj) = {(1)’(-AJ)} ’ j=1, 2 3,

in which case D 1is given by

7

1/2 1/2 0 )
2/3 0 1/3

0 1/3 2/3

(/3  1/3 1/3]

Lemma 4

The covariance between Xn and Xn+m » for n>0,m>1, is given

by

cov x, %) = 3 s "0y (12)

and also by

Cov (xn,xn+m) - gf(l) ot ACy) (®"-1) b gf(l) ’ 1y

4R e ey wmath vow -
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where for any vector X, the matrix A(x) is defined by diag (xl,...,xN).

Proof. By Lemma 3, the covariance is equal to

Cov (xn’xn+m) - E(xn'xb+m) - E(Xn) E(xh+m)

N H
- m 1 Q) _ 1) (1)
151 jfl (vi(P )ijui My YyYghe My ) I

which proves (12). Equation (13) results from (11).

From Lemmas 3 and 4, we conclude that, for the process ?, the intervals
of time between events are identically distributed and are in general cor-
related. If the Markov chain P is aperiodic, then lim P" =T, and the
covariance of Xn and xn-Hn tends to zero as m ten::to infinity.

To conclude this section, we shall now examine under what condition
the process i\" is a renewal process. If % is a renewal process, then it is
characterised by its interrenewal distribution r(+). The distribution
r(*) 1is PE and is represented as r(x) = y F(x), for x > 0, (by Lemma 3)
or as r(x) =y DG(x), for x >0, where (Gl(x),...,GL(x)) is any set of
linearly independent PH-distributions satisfying (10), and D 1is the cor-
responding matrix. The next theorem holds for any choice of G(x).

Theorem 1

The process B is a renewal process if and only if the following pro-
perty holds.

For all k > 2, and for all (11,...,rk) satisfying 1 <1, < L,
for i =1, ..., k,

k
X 4 I ((P-r)a_ ]l e=0, (14)
1 i=2 1
or equivalently,
k k
y & (0 P s )e= T (D), (15)

ST AP

R T o

L
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where 2*1 represents the jth column of the matrix D, and Aj - diag(g"j).
Proof. The proof is very simple. Since the variables {Xn,n > 0} are identi-
cally distributed, 3 is a renewal process if and only if for all k > 2,

the random variables Xl, Xz, ceny xk are independent, which is true if and

only if
k k
P[1:1 {Xi g_xi}] = 120 P[xi :_xi], for all Xys ceer Xy >0,

e ey

equivalently, if

N k k
T {Y F, (xl) i P (xj) - I Y, F (x )} =0,
'1 Y1V j=2 V-1 J Y3 j=1 V3 3

15}53

for all Xps eees X >0, 1if and only if (by (10))

N L k

z I {y, d (o (P -y, )d ]
“i-l T -1 VyVyTy =2 j-lvj vj vaj
l<ic<k k

« I G_ (x,)} =0, for all Xps eees X >0 .

X g1 Ty 3

Since the PH-distributions Gi(-) are linearly independent, this holds if

and only if
N k
; Ly, d {n ( -y, M ]} =0
i s SRAEIRE ST b B 1 At B IG '
l:;:k

for all t,, ..., 7, such that 1 < 7y S L. The condition (14) 1is now

obvious, and it is a simple matter to prove that (l4) and (15) are equivalent.

P LY TR
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This theorem provides us with a technical condition which is not very
attractive. The following corollary is more interesting and useful for
modeling purposes.

Corollary 1

For 3 to be a renewal process, it is sufficient that

(P-T) D=0, (16)

or that

DA(y) (P-T) = 0 . an

If L is equal to one, then both conditions are always satisfied and B
is always a renewal process.

If L is equal to N, then both couditions are necessary, as ? is a
renewal process if and only if the matrix P-I' is equal to zero.

Proof. The condition (16) is obviously sufficient, as (P-T)D, =0 for
all i implies that (P"-T) 4, e = P*L(p-1) D, =0 foreach n2>1 and
each 1i=1, ..., L, which in turn implies (14).

Similarly, the condition (17) is sufficient, since
x 8, (%) = y Ai(P-I')Pn-l - g’fi Aty e-neP*l .

If L is equal to one, then D = e¢ and both conditions (16) and (17)
are satisfied.

If L is equal to N, then D may be chosen equal to I, and both
(16) and (17) reduce to P-I' = 0, The necessary part of the condition re-
sults from (14): if k=1, then y A (P-I) A4e must be equal
to zero for all {, j=1, ..., N. As D=1, this reduces to Yt(P

0, for all 4, =1, ..., N. Since Yy 0 for all 1, the Corollary is

proved.

14779 "
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Remarks

1. One easily proves that condition (16) holds if and only if there exist
a vector v such that P D = e » v. Therefore, it is not necessary to
determine y 1in order to check whether (16) holds or not.

2. The conditions (16) and (17) are not equivalent. Simple examples exist,
for which one of the conditions holds, but not the other.

3. If neither (16) nor (17) holds, the combined condition,
T
D" A(y) (>-T) D=0, (18)

is not a sufficient condition for B to be a renewal process (this is
proved by a counterexample), but 1is the necessary and sufficient condition
for two successive intervals of time to be independent.

Simon [7] examines equivalences for Markov-renewal processes and, in
particular, the conditions under which a Markov-renewal process is equiva-
lent to a renewal process. It appears that for our process ?, Theorems
2.2.1, 2.2.2 and 2.2.9 [7] respectively correspond to the sufficient condi-
tion (17), and to the cases L =1 and L =N in Corollary 1. From
Theorem 2.2.8 (7], results the following necessary condition. There exist

a non-negative vector w such that
(e P-yf cw =0,

moreover, if condition (17) holds, that vector clearly is y; if condition
(16) holds, we do not know w, but the right eigenvector corresponding to
r(t) (in the terminology of (7]), is [E(t).

Because of the special structure of our point process, and in particular
because the distributions, we consider, are PH, we have obtained conditions

which do not have to be examined for each ¢.
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Finally, let us mention that Simon [7] introduces and analyses the
notion of collapsibility, which generalizes to Markov renewal processes the
notion of lumpability for Markov chains - see Kemeny and Snell [2]. If
the matrix D contains only entries equal to zero or omne, this corresponds
to the notion of collapsibility. As we have observed, the entries of D
may take any real values. If those values were all positive, one might con-
sider that D corresponds to some sort of randomized collapsibility, since
the row sums of D are equal to one. This correspondence appears difficult
to extend to the case where D contains negative entries.

4. Examples
4.1 Exponential distributioms

The case where the PH-distributions 'Ti) are exponential,

(o
respectively with parameter Ai’ is particularly simple. We then immediately

obtain that

T=-a(A), A=P, mt= (1_{1)'1 ,

-1
"i = mk Yi Ai ’ for i=1, ..., N,

where the vectors A and Afl respectively have components equal to Ag
and A;l. After some simple manipulations, (9) reduces to

m(t) =mtt e +mh (I-mir aQ7H) -+ 7,7t

19)

+ar [wr a07h - ep (aQ) I-PO)] -+ iyl

Exponential distributions with different parameters are linearly inde-
pendent. Therefore, the distributions {(;1,21). 1< j <L} may be chosen to

be the set of different exponential distributions in {qli.ri), i=1, ..., N},

and the matrix D has a very simple structure: each element of D 1is either
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equal to zero or one, each row of D contains exactly one element equal to
one, each column of D contains at least one element equal to one. We
may then strengthen Corollary 1.

Corollary 1.

If the entries of D are each equal to zero or one, and if L = N - 1,
then a necessary and sufficient condition for ? to be a renewal process is
that one at least of Equations (16) or (17) holds.

Proof. The technical proof is belabored. We do reproduce it here since it
cannot be extended to L < N - 2.

If the matrix P has identical rows, then ? is obviously a renewal

process, with hyperexponential intervals between events, and the matrix

(I--P+I‘)"1 in (9) may be replaced by the identity matrix.

4.2 Platooned events

Let us assume that the process consists of groups of events, the number
of events in a group has a discrete PH-distribution (f,F), the intervals of
time between events in a given group have PH-distribution (a,A), while the
intervals of times between groups have a PH-distribution (8,B). Such a
process may be used to model platooned arrivals to a system, as is done in

Neuts and Chakravarthy [6]. Then,

F | e~Fe
Pe |——F—==— (20)
fF | 1-fFe

P 41is a square matrix of order N if F 1is a matrix of order N - 1;
(gi,'ri) = (3,A), for i=1, ..., N-1, and (c_xN,TN) = (8,B).
Simple calculations yield that the stationary probability vector y

of P 1is givenby y = Cz,yu), where
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Y=vF, yy=1-Ye, (21)
v= (1Ol ga-nt, (22)

and that
w = [Fe) (aate) +yg BB,

v -1
lr_ia-m*yig_A . for i=1, ..., N-1,

--m*yN_e_B'l, for 1 =N .

The expression (9) does not simplify much.

If the PH-distributions (a,A) and (B8,B) are different, then we

clearly may choose D equal to

(23)

o

]
O Hecet
H OO0 O

and we may complete the corollary 1 as follows.

Corollary 1"
If the matrix D 4is given by (23), then the process ? is a renewal

process if and only if

T aq @*-ryp=0, for all n> 1. (24)

Proof. We partition the matrix P and the vector y as

e e g
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Simple calculations yield that

-1 -1

-1
11 - Yq 321 (I-Pll) » 'Y2 1+ 221 (I-Pll) e) . ro

a. (24) is a necessary condition. This is easily proved as follows. For
n=1, it is equivalent to (18), the condition for two successive intervals

to be independent. For n = 2 , we consider (14) with k = 3, Since

x A, (- 4 (@-D) AT39_+1 Atl (P-T) 4, (P-T) AT3 e=

X A‘t (P--I‘)2 A‘r e must be equal to zero, this proves (24) for n = 2.
1 3

Similarly, we prove that (24) 1is necessary for larger values of n .

AR T NI

b. (24) is a sufficient condition. It is easy, although tiresome, to show

that (24) implies that

;
g

n+l n
Y, ¢ e Byxy) Ce=0, for all n >0, (25)
where C;,=PFy-e- X This in turn implies that

n n-l v m-1-v | n
C,- . Cier(B);-x,) C -C; e

1 val 1 21 <17 *1 | 1

(P-r)n B | e e e = = ———— + ——— L]
n-1

It is then a simple matter to prove that for v equal either to 1l or 2 ,
(-1 8, (P-D" 2 e =0,

ad @-n"8) -8 e -4 e, for nm>1.
Therefore, the left-hand side of (14) is equal to zero if rt, = 2 for any .

i=2, ..., k=1 and is otherwise equal to E

PR

- o ap @0ty
g 1’ k

This completes the proof.
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Remark. This corollary has the following simple interpretation. If D 1is
given by (23), then N - 1 of the distributions {(a,,T,), i =1, ..., N}
have a “common" type, the last one has an "odd" type. Let N1 denote the E
number of intervals of the common type between two consecutive intervals of

the odd type, and let NZ similarly denote the number of intervals of the odd

type between two intervals of the common type. From Corollary 1", it results

that

the process 3 is a renewal process if and only if Nl and N2

both have a geometric distribution, the parameters being respective-

¥ Sy, o A 1 R A gl

ly equal to (l-PZZ) and P22.

Clearly, N2 has a geometric distribution with parameter P22. The equa-

tions (25) may be written as

n o+l
PP, 8 62} e) s for n>0. (26)

n-1 _n n n

(1-1’22)n P22 » this completes this proof. P
In the present case, from the equations (20-22) and (26), it results that

the process of platooned events is a renewal process if and only if

f£Pe=(1- TN ™ , for n>0,

where 1 + f (I-F)-1 e 1is the expected number of events in a platoon.

4.3 The Interrupted Poisson Process ;

This process is used in models for telephone engineering (Heffes [1]).
We consider a process in a random environment, with two alternating environ-
ment states. Both states have exponential duration, with parameters 01 and
9, respectively. While the process is in the first environment state (on-state),
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an independent Poisson process of rate A 1s turned on. When the environ-
ment is in the second state (off-state), no arrivals can occur. Neuts and
Chakravarthy [6] have shown that the interrupted Poisson process is a special
case of the platooned events process, and that the number of events in a
platoon is geometric, therefore, the stationary interrupted Poisson process is
a renewal process. This was already shown by Kuczura [3] by different methods.
In fact, it appears that the interrupted Poisson process is a very
special case of the type of processes analysed in the present paper. From
[6], one observes that the process can be described by two states and two

PH-distributions, the matrix P and the PH-distributions are as follows.

DN
A+cl A+01
P = , 27)
A %
At

|
f
2= @, I, = (A -0, ]

-A-cl A+ol 0
%, = 1,0,0) , T2 = 0 -A-ol A+ol .
0 6,0, (A+0 y~1 ~g ‘
172 1 2 ‘

The first state of the Markov chain P corresponds to the following event

PIOTR RPN

{the interrupted Poisson process is in the on-state, and an arrival will

occur before the end of the on-state}. The second state corresponds to the

T T

following composite event {the interrupted Poisson process is in the on-
state, no arrivals will occur before the next off-state or the process is in

the off-state, or the process has returned to the on-state and an arrival will

occur before the next off-state}. From the structure (27) of P, it is
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obvious that the interrupted Poisson process is a renewal process.

References ’7

I

[1] H. Heffes (1973) 3
Analysis of First-Come, First-Served Queueing Systems with Peaked g

Inputs
Bell Syst. Tech. Journ., 52, 1215~1228.

(2] J. Kemeny and L. Snell (1960) 3
Finite Markov Chains ’. 3
Van Nostrand, Princeton, New Jersey.

[3] A. Kuczura (1973)
The Interrupted Poisson Process as an Overflow Process
Bell Syst. Tech. Journ., 52, 437-448.

{4] M. F. Neuts (1975)
Probability Distributions of Phase Type
Liber Amicorum Prof. Emeritus H. Florin, Dept. of Math., Univ.
Louvain, Belgium, 173-206.

P 2 MERIRAPIMI T2 v, MR, Y (G

[5] M. F. Neuts (1979)
A Versatile Markovian Point Process
J. Appl. Prob., 16, 764-779.

0T

[6] M. F. Neuts and S. Chakravarthy (1980)
A Single Server Queue with Platooned Arrivals and Phase Type Services
Technical Report 50B, Applied Mathematics Institute, University of
Delaware.

[7] B. Simon (1979)
Equivalent Markov-Renewal Processes
Technical Report VTR 8001, Department of Industrial Engineering and
Operations Research, Virginia Polytechnic Institute and State University.




4 — sy b a iy - "- TNEEE A9 e abay _‘a D BRr, o e e . N 3 - e R ceT “'5'&'_"::3“!!

7 F ‘ SECURIT :+ CLAS 4 W & TP ta Fniered) &
3 READ INSTRUCTIONS g}
3 8 DOCUMENTATION PAGE —- BEFORE COMPLETING FORM

[2 GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

—BIJ ¢989]an- AQ7037

LE (and Subdile)

r 4

- (6 A PHASE TYPE, SEMI-MARKOVIAN POINT_EROCESS. ( Q9
& A - > = = ) - REPORY NUMBER
r
ﬁ 7. AUTHOR(Ss) 8. CONTRACT OR GRANT NUMBER(s)
. § /-Ow / l RS .
R Guy [Latouche , S| |V AFOsR-77-3236 <k
* f s”ﬁnronmmc ORGANIZATION NAME AND ADDRESS _%N%— -
{ University of Delaware ‘ ORI UNIT NUMBERS
Applied Mathematics Institute / G 1 —
: Newark, DE 19711 61 A5 / 7 Ab ,
) 1. CONTROLLING OFFICE NAME AND ADDRESS % ’
Air Force Office of Scientific Research/\ ( / | 7 Apmp -

Bolling AFB, Washington, DC 20332 2% i

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Oflice) 15. SECURITY CLASS. (of this report)

< '- UNCLASSIFIED
i / ﬁ ; {'S é 6 @ 188" DECL ASSIFICATION/DOWNGRADING

; 16. DISTRIBUTION STATEMENT (of this Report)

’ Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different {rom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Semi-Markov process, phase type distributions, conditions for independence,
computational probability

k ABSTRACT (Continue on reverse side If necessary and identify by block number
A semi-Markovian point process is-defined, for which the intervals of time

between successive events have phase type 'distribution. The distribution of
the number of events in an interval is examined, and it is shown how the ex-
pected number of events in an interval may be efflciently camputed. A station-
. ary version of the process is analyzed. In particular, the necessary and
sufficient condition under which the new process is a renewal process is deter-
mined. Simple sufficient conditions are presented.

7w A R Y (S SRR E 0 WY L LIt TR SR

Py

SECURITY CLASSIFICATION OF THIS PAGE (When Dete E

DD ,"5i"; 1473  EoiTion OF 1 NOV 68 1S OBSOLETE UNCIT.ASSIFIED y_z_l Q 7(2
‘ nter .,




